metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of aqua(dihydrogen ethylenediaminetetraacetato- $\kappa^5 O, O', N, N', O''$)nickel(II)

Ivana Kočanová, Juraj Kuchár,* Vladimíra Dankovičová and Juraj Černák

Department of Inorganic Chemistry, Institute of Chemistry, P. J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia Correspondence e-mail: juraj.kuchar@upjs.sk

Received 8 January 2010; accepted 15 January 2010

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.002 Å; R factor = 0.020; wR factor = 0.055; data-to-parameter ratio = 14.8.

The crystal structure of the title compound, $[Ni(C_{10}H_{14}-N_2O_8)(H_2O)]$ or $[Ni(H_2edta)(H_2O)]$ (H₄edta is ethylenediaminetetraacetic acid), originally determined by Smith & Hoard [*J. Am. Chem. Soc.* (1959), **81**, 556–561] has been redetermined to a significantly higher precision. The Ni^{II} atom is coordinated in a distorted octahedral geometry by two N atoms and three O atoms from three carboxylate groups of the H₂edta²⁻ ligand and by an O atom of a water molecule. The complex molecules are linked by intermolecular $O-H \cdots O$ hydrogen bonds into layers perpendicular to [100].

Related literature

For the crystal structures of nickel(II) complexes with deprotonized derivates of H₄edta, see: Agre, Trunov *et al.* (1980); Agre, Sysoeva *et al.* (1980); Agre *et al.* (1981); Coronado *et al.* (1986); Sysoeva *et al.* (1981); Porai-Koshits *et al.* (1975); Sysoeva *et al.* (1986); Zubkowski *et al.* (1995); Stephens (1969). For the earlier determination of the title compound, see: Smith & Hoard (1959).

Experimental

Crystal data

[Ni($C_{10}H_{14}N_2O_8$)(H_2O)] $M_r = 366.96$ Monoclinic, $P2_1/c$ a = 11.6786 (2) Å b = 6.9358 (1) Å c = 16.6343 (2) Å $\beta = 91.140$ (1)°

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector Absorption correction: numerical [Clark & Reid (1995) in *CrysAlis PRO* (Oxford

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.055$ S = 1.062935 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1 \cdots O7^i$	0.82	1.77	2.5557 (14)	159
O3−H3···O5 ⁱⁱ	0.82	1.79	2.5864 (13)	164
$O6-H6A\cdots O9^{iii}$	0.88	2.15	2.9294 (12)	148
$O6-H6B\cdots O2^{iv}$	0.86	1.81	2.6394 (11)	162
Symmetry codes:	(i) $-x + 1$	-v + 1, -z + 3	1: (ii) $x_{1} - y_{2} - y_{3}$	$\frac{1}{2}$, $z + \frac{1}{2}$; (iii)

Symmetry codes. (i) -x + 1, -y + 1, -z + 1, (ii) $x, -y - \frac{1}{2}, z + \frac{1}{2}$, (iii) -x + 1, -y, -z + 1; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Crystal Impact, 2007); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Slovak grant agency APVV (contract Nos. APVV-VVCE-0058–07 and APVV-0006–07) and the grant agency VEGA (grant No. 1/0089/09). Support from P. J. Šafárik University (VVGS 37/09–10) is also gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2407).

References

Agre, V. M., Sysoeva, T. F., Trunov, V. K., Efremov, V. A., Fridman, A. Y. & Barkhanova, N. N. (1980). *Zh. Strukt. Khim.* **21**, 110–117.

- Agre, V. M., Sysoeva, T. F., Trunov, V. K., Fridman, A. Y. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 114–120.
- Agre, V. M., Trunov, V. K. & Sysoeva, T. F. (1980). Dokl. Akad. Nauk SSSR, 250, 1123–1126.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Coronado, E., Drillon, M., Fuertes, A., Beltran, D., Mosset, A. & Galy, J. (1986). J. Am. Chem. Soc. 108, 900–905.
- Crystal Impact (2007). DIAMOND. Crystal Impact, Bonn, Germany.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

 $V = 1347.12 (3) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 1.49 \text{ mm}^{-1}$ T = 291 K 0.35 \times 0.31 \times 0.15 mm

Diffraction, 2009)] $T_{\min} = 0.690, T_{\max} = 0.830$ 43864 measured reflections 2935 independent reflections 2534 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$

H-atom parameters constrained

198 parameters

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^-$

 $\Delta\rho_{\rm min} = -0.18~{\rm e}~{\rm \AA}^{-3}$

- Porai-Koshits, M. A., Nesterova, Y. M., Polynova, T. N. & de Garcia Banus, D. T. (1975). Koord. Khim. 1, 682.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. S. & Hoard, J. L. (1959). J. Am. Chem. Soc. 81, 556-561.
- Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1723–1734.

- Sysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M. & Fridman, A. Ya. (1986). Zh. Strukt. Khim. 27, 108-114.
- Sysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M., Fridman, A. Ya. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 99–105.
 Zubkowski, J. D., Perry, D. L., Valente, E. J. & Lott, S. (1995). Inorg. Chem. 34,
- 6409-6411.

Acta Cryst. (2010). E66, m196-m197 [doi:10.1107/S1600536810002011]

Redetermination of aqua(dihydrogen ethylenediaminetetraacetato- $\kappa^5 O, O', N, N', O''$)nickel(II)

I. Kocanová, J. Kuchár, V. Dankovicová and J. Cernák

Comment

We are interested in the synthesis and characterization of Cu—Ni heterobimetallic complexes as models of magnetic alternate chains. Few Cu—Ni heterobimetallic complexes based on edta-type ligands (H₄edta = ethylenediaminetetraacetic acid) have been already structurally characterized (Agre, Trunov *et al.*, 1980; Agre, Sysoeva *et al.*, 1980; Agre *et al.*, 1981). Previously, the crystal structures of one-dimensional [Ni(H₂O)₄(edta)Ni].2H₂O (Coronado *et al.*, 1986), dinuclear [Ni₂(en)(edta)(H₂O)₃].H₂O (Sysoeva *et al.*, 1981), ionic [Ni(H₂O)₆][Ni(Hedta)]₂.2H₂O (Porai-Koshits *et al.*, 1975) and ionic [Ni(en)₃][Ni(edta)].4H₂O (Sysoeva *et al.*, 1986) complexes with the edta(4-) ligand were reported. As a part of our synthetic experiments on Cu—Ni heterobimetallic complexes from the aqueous system Ni²⁺-H₄edta we have isolated the title compound. Its crystal structure was already studied by Smith & Hoard (1959). They obtained a correct structural model, however only two common isotropic thermal parameters were used and the positions of the hydrogen atoms were not determined. Consequently, the precision of the geometric parameters was limited.

In the crystal structure of the title compound (Fig. 1) the nickel(II) atom exhibits an elongated octahedral coordination geometry. Five coordinations sites are occupied by the partially deprotonized, pentadentate chelate H_2edta^{2-} ligand, which coordinates through both nitrogen atoms and three oxygen atoms from carboxylate groups, among these two are deprotonized. The sixth coordination site is occupied by the oxygen atom of a water molecule. The fourth carboxylate group is not coordinated to the metal. The same type of coordination provided by the H_2edta^{2-} ligand was observed *e.g.* in analogous complexes [Co(H₂edta)(H₂O)].H₂O (Zubkowski *et al.*, 1995) and [Cu(H₂edta)(H₂O)] (Stephens, 1969). As expected, the intrachelate angles D1—Ni—D2 (D's are N and O donor atoms) in the title compound are significantly smaller then the ideal value of 90°. In the crystal packing, the H atoms of the water molecule and of two carboxylic groups are involved in intermolecular O—H···O hydrogen bonds (Fig. 2; Table 1) forming layers perpendicular to [100] (Fig. 3).

Experimental

Chemicals of reagent grade quality were obtained from commercial sources and were used as received. Solid NiCO₃.2Ni(OH)₂ (0.304 g, 1 mmol), ethylenediaminetetraacetic acid (0.877 g, 3 mmol) and tetraethylammonium bromide (0.421 g, 2 mmol) were dissolved under stirring in 10 cm³ of water at room temperature. The formed blue solution was filtered and left aside for crystallization at room temperature. After eight months, few blue prismatic crystals of the title compound appeared along with white microcrystalline material on slow evaporation of the solvent.

Refinement

In order to allow a direct comparison of the present crystal structure determination with the previously published one (Smith & Hoard, 1959) the same labelling of the atoms was adopted. The hydrogen atoms of the water molecule were located in difference Fourier map, and refined with the O—H bond and the H…H separation restrained to 0.85 and 1.380 Å, respectively,

and with $U_{iso}(H) = 1.5 U_{eq}(O)$. The hydrogen atoms of the H₂edta²⁻ ligand were positioned geometrically with C—H = 0.97 Å and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{iso}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. View of the hydrogen bonding network in the title compound. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x,-0.5 - y,1/2 + z; (iii) 1 - x,-y,1 - z; (iv) 1 - x,-1/2 + y,1.5 - z

Fig. 3. Hydrogen bonded layers in the crystal structure of the title compound. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

aqua(dihydrogen ethylenediaminetetraacetato- $\kappa^5 O, O', N, N', O''$)nickel(II)

Crystal data	
[Ni(C ₁₀ H ₁₄ N ₂ O ₈)(H ₂ O)]	F(000) = 760
$M_r = 366.96$	$D_{\rm x} = 1.809 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 23028 reflections
a = 11.6786 (2) Å	$\theta = 2.9 - 29.7^{\circ}$
<i>b</i> = 6.9358 (1) Å	$\mu = 1.49 \text{ mm}^{-1}$
c = 16.6343 (2) Å	T = 291 K
$\beta = 91.140 \ (1)^{\circ}$	Prism, blue
V = 1347.12 (3) Å ³	$0.35\times0.31\times0.15~mm$
Z = 4	

Data collection	
Oxford Diffraction Xcalibur	2935 independent reflections

diffractometer with a Sapphire2 (large Be window) detector Radiation source: fine-focus sealed tube 2534 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$ graphite $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ Detector resolution: 8.3438 pixels mm⁻¹ $h = -14 \rightarrow 14$ ω scans Absorption correction: numerical [Clark & Reid (1995) in CrysAlis Pro (Oxford Dif $k = -8 \rightarrow 8$ fraction, 2009)] $T_{\min} = 0.690, T_{\max} = 0.830$ $l = -21 \rightarrow 21$

43864 measured reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.020$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.055$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 0.1019P]$ where $P = (F_o^2 + 2F_c^2)/3$
2935 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
198 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.328740 (14)	0.17883 (3)	0.575762 (10)	0.01636 (7)
C1	0.31560 (12)	0.2378 (2)	0.75097 (8)	0.0200 (3)
H1A	0.3556	0.1440	0.7845	0.024*
H1B	0.2635	0.3081	0.7850	0.024*
C2	0.40253 (12)	0.3781 (2)	0.71795 (9)	0.0228 (3)
C3	0.13224 (12)	0.2211 (2)	0.67502 (9)	0.0201 (3)
H3A	0.0979	0.2483	0.7264	0.024*

H3B	0.0831	0.1308	0.6462	0.024*
C4	0.14153 (12)	0.4066 (2)	0.62701 (8)	0.0199 (3)
H4A	0.0659	0.4615	0.6182	0.024*
H4B	0.1878	0.4994	0.6568	0.024*
C5	0.11558 (13)	0.2632 (2)	0.49152 (9)	0.0214 (3)
H5A	0.1084	0.3382	0.4425	0.026*
H5B	0.0404	0.2557	0.5150	0.026*
C6	0.15460 (13)	0.0613 (2)	0.47048 (9)	0.0235 (3)
C7	0.24547 (12)	0.5370 (2)	0.51157 (9)	0.0201 (3)
H7A	0.2688	0.6278	0.5531	0.024*
H7B	0.1889	0.5995	0.4769	0.024*
C8	0.34815 (11)	0.4803 (2)	0.46292 (8)	0.0190 (3)
C9	0.24045 (13)	-0.0747 (2)	0.70537 (9)	0.0226 (3)
H9A	0.3177	-0.1259	0.7083	0.027*
H9B	0.2015	-0.1366	0.6603	0.027*
C10	0.17986 (12)	-0.1308 (2)	0.78149 (8)	0.0205 (3)
N1	0.24747 (9)	0.13322 (17)	0.68850 (7)	0.0161 (2)
N2	0.19470 (10)	0.36547 (16)	0.54870 (7)	0.0155 (2)
01	0.37976 (9)	0.61360 (17)	0.41363 (7)	0.0304 (3)
H1	0.4430	0.5870	0.3962	0.046*
O2	0.45601 (11)	0.4832 (2)	0.76438 (7)	0.0434 (3)
O3	0.18039 (11)	-0.31910 (15)	0.79037 (7)	0.0333 (3)
H3	0.1531	-0.3471	0.8339	0.050*
O4	0.13713 (9)	-0.01849 (16)	0.82733 (6)	0.0293 (3)
O5	0.09695 (7)	-0.02364 (13)	0.41745 (5)	0.0374 (3)
O6	0.45974 (7)	-0.01221 (13)	0.58721 (5)	0.0402 (3)
H6A	0.4811	-0.1050	0.5547	0.060*
H6B	0.4970	-0.0318	0.6315	0.060*
O7	0.41759 (8)	0.37646 (16)	0.64146 (6)	0.0234 (2)
O8	0.23968 (9)	-0.00858 (15)	0.50781 (6)	0.0280 (2)
09	0.39642 (9)	0.32508 (15)	0.47244 (6)	0.0232 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01745 (10)	0.01728 (10)	0.01441 (10)	0.00186 (7)	0.00174 (6)	-0.00042 (7)
C1	0.0201 (7)	0.0249 (8)	0.0149 (7)	-0.0024 (6)	-0.0003 (5)	-0.0006 (6)
C2	0.0189 (7)	0.0290 (8)	0.0205 (7)	-0.0038 (6)	-0.0002 (6)	-0.0009 (6)
C3	0.0146 (6)	0.0271 (8)	0.0187 (7)	-0.0010 (6)	0.0028 (5)	0.0029 (6)
C4	0.0194 (7)	0.0231 (8)	0.0172 (7)	0.0046 (6)	0.0031 (5)	-0.0012 (6)
C5	0.0212 (7)	0.0236 (8)	0.0190 (7)	-0.0046 (6)	-0.0042 (6)	0.0006 (6)
C6	0.0257 (8)	0.0259 (8)	0.0191 (7)	-0.0088 (6)	0.0063 (6)	-0.0056 (6)
C7	0.0218 (7)	0.0150 (7)	0.0236 (7)	-0.0007 (6)	0.0033 (6)	0.0014 (6)
C8	0.0179 (7)	0.0226 (8)	0.0165 (7)	-0.0058 (6)	-0.0020 (5)	0.0006 (6)
C9	0.0312 (8)	0.0165 (8)	0.0203 (7)	-0.0005 (6)	0.0067 (6)	0.0000 (6)
C10	0.0228 (7)	0.0214 (8)	0.0172 (7)	-0.0028 (6)	-0.0009 (6)	0.0000 (6)
N1	0.0177 (6)	0.0157 (6)	0.0151 (6)	-0.0010 (4)	0.0018 (4)	-0.0003 (5)
N2	0.0170 (5)	0.0144 (6)	0.0150 (5)	-0.0014 (4)	0.0010 (4)	-0.0014 (4)

01	0.0223 (5)	0.0333 (6)	0.0359 (6)	-0.0026 (5)	0.0076 (5)	0.0145 (5)
O2	0.0451 (7)	0.0591 (9)	0.0260 (6)	-0.0309 (7)	-0.0008(5)	-0.0090 (6)
O3	0.0559 (8)	0.0203 (6)	0.0240 (6)	-0.0024 (5)	0.0132 (5)	0.0044 (5)
04	0.0390 (6)	0.0272 (6)	0.0222 (5)	0.0020 (5)	0.0111 (5)	-0.0003 (5)
05	0.0315 (6)	0.0481 (8)	0.0327 (6)	-0.0110 (6)	0.0007 (5)	-0.0250 (6)
O6	0.0448 (7)	0.0493 (8)	0.0263 (6)	0.0301 (6)	-0.0022 (5)	-0.0052 (6)
07	0.0203 (5)	0.0324 (6)	0.0176 (5)	-0.0079 (4)	0.0021 (4)	-0.0005 (4)
08	0.0352 (6)	0.0183 (5)	0.0304 (6)	0.0005 (5)	-0.0026 (5)	-0.0066 (5)
09	0.0245 (5)	0.0244 (6)	0.0210 (5)	0.0030 (4)	0.0060 (4)	0.0019 (4)
Geometric pa	arameters (Å, °)					
Ni1_08		2 0006 (10)	C5	Н5Л	0.0	700
Ni1-07		2.0000 (10)	C5—	H5R	0.9	700
Ni1-06		2.0200 (10)	C5—	05	1.2	168 (16)
Ni1N2		2.0300()) 2.0738(11)	C6	08	1.2-	582 (19)
Ni1N1		2.0730(11) 2.1421(11)	C0 C7	N2	1.2.	708(17)
Ni1_09		2.1421(11) 2 1591(10)	C7	C8	1.5	121 (19)
C1—N1		14852(18)	C7—	H7A	0.9	700
C1-C2		1 517 (2)	C7—	H7B	0.9	700
C1—H1A		0.9700	C8—	.09	1.23	239 (17)
C1—H1B		0.9700	C8—	01	1.2	945 (17)
C2		1.2245 (18)	C9—	N1	1.47	717 (18)
C2—O7		1.2880 (17)	C9—	·C10	1.51	14 (2)
C3—N1		1.4903 (18)	С9—	H9A	0.97	700
C3—C4		1.519 (2)	С9—	H9B	0.97	700
С3—НЗА		0.9700	C10-	04	1.20	054 (17)
С3—Н3В		0.9700	C10-	03	1.31	140 (18)
C4—N2		1.4818 (17)	01—	-H1	0.82	200
C4—H4A		0.9700	03—	-H3	0.82	200
C4—H4B		0.9700	O6—	-H6A	0.88	80
C5—N2		1.4922 (17)	O6—	-H6B	0.85	59
С5—С6		1.516 (2)				
08—Ni1—O	7	177.83 (4)	05—	-C6—O8	125	.26 (14)
08—Ni1—O	6	90.65 (4)	05—	-C6—C5	116	.05 (13)
07—Ni1—O	6	90.80 (4)	O8—	-C6C5	118	.68 (13)
08—Ni1—Ni	2	84.33 (4)	N2—	-C7C8	110	.17 (11)
07—Ni1—Ni	2	94.08 (4)	N2—	-С7—Н7А	109	.6
06—Ni1—N2	2	172.75 (4)	C8—	С7—Н7А	109	.6
08—Ni1—N	1	99.45 (4)	N2—	-C7—H7B	109	.6
O7—Ni1—N	1	81.88 (4)	C8—	С7—Н7В	109	.6
06—Ni1—N	1	99.65 (4)	H7A-	—С7—Н7В	108	.1
N2—Ni1—N	1	86.36 (4)	09—	-C8O1	125	.02 (13)
08—Ni1—O	9	92.86 (4)	09—	-C8—C7	121	.86 (13)
07—Ni1—O	9	85.40 (4)	01—	-C8—C7	113	.09 (13)
06—Ni1—O	9	95.41 (4)	N1—	-C9C10	116	.13 (12)
N2—Ni1—O	9	79.67 (4)	N1—	-C9—H9A	108	.3
N1—Ni1—O	9	160.37 (4)	C10-	С9Н9А	108	.3
N1-C1-C2		114.38 (11)	N1—	-С9—Н9В	108	.3

N1—C1—H1A	108.7	С10—С9—Н9В	108.3
C2—C1—H1A	108.7	Н9А—С9—Н9В	107.4
N1—C1—H1B	108.7	O4—C10—O3	124.91 (14)
C2—C1—H1B	108.7	O4—C10—C9	124.69 (13)
H1A—C1—H1B	107.6	O3—C10—C9	110.40 (12)
O2—C2—O7	123.39 (14)	C9—N1—C1	112.09 (11)
O2—C2—C1	119.36 (13)	C9—N1—C3	112.08 (11)
O7—C2—C1	117.23 (13)	C1—N1—C3	112.03 (11)
N1—C3—C4	110.60 (11)	C9—N1—Ni1	109.82 (8)
N1—C3—H3A	109.5	C1—N1—Ni1	107.45 (8)
С4—С3—НЗА	109.5	C3—N1—Ni1	102.85 (8)
N1—C3—H3B	109.5	C7—N2—C4	113.14 (11)
C4—C3—H3B	109.5	C7—N2—C5	111.51 (11)
НЗА—СЗ—НЗВ	108.1	C4—N2—C5	112.76 (11)
N2—C4—C3	109.56 (12)	C7—N2—Ni1	106.69 (8)
N2—C4—H4A	109.8	C4—N2—Ni1	104.89 (8)
C3—C4—H4A	109.8	C5—N2—Ni1	107.26 (8)
N2—C4—H4B	109.8	C8—O1—H1	109.5
C3—C4—H4B	109.8	С10—О3—Н3	109.5
H4A—C4—H4B	108.2	Ni1—O6—H6A	129.9
N2—C5—C6	113.66 (12)	Ni1—O6—H6B	123.5
N2—C5—H5A	108.8	H6A—O6—H6B	105.4
С6—С5—Н5А	108.8	C2—O7—Ni1	117.40 (9)
N2—C5—H5B	108.8	C6—O8—Ni1	115.17 (10)
C6—C5—H5B	108.8	C8—O9—Ni1	109.95 (9)
H5A—C5—H5B	107.7		
N1—C1—C2—O2	173.79 (14)	C3—C4—N2—C5	73.50 (14)
N1—C1—C2—O7	-7.7 (2)	C3—C4—N2—Ni1	-42.89 (12)
N1—C3—C4—N2	58.79 (15)	C6—C5—N2—C7	116.31 (13)
N2—C5—C6—O5	-173.79 (12)	C6—C5—N2—C4	-115.13 (13)
N2—C5—C6—O8	7.39 (19)	C6—C5—N2—Ni1	-0.16 (13)
N2—C7—C8—O9	-17.75 (18)	08—Ni1—N2—C7	-123.50 (9)
N2—C7—C8—O1	164.25 (12)	O7—Ni1—N2—C7	55.03 (9)
N1—C9—C10—O4	0.8 (2)	N1—Ni1—N2—C7	136.61 (9)
N1—C9—C10—O3	-179.23 (13)	09—Ni1—N2—C7	-29.54 (8)
C10—C9—N1—C1	63.40 (16)	08—Ni1—N2—C4	116.22 (9)
C10-C9-N1-C3	-63.58 (16)	07—Ni1—N2—C4	-65.25 (9)
C10—C9—N1—Ni1	-177.24 (10)	N1—Ni1—N2—C4	16.33 (9)
C2-C1-N1-C9	133.66 (13)	09—Ni1—N2—C4	-149.82 (9)
C2-C1-N1-C3	-99.34 (14)	08—Ni1—N2—C5	-3.90 (8)
C2—C1—N1—Ni1	12.92 (14)	07—Ni1—N2—C5	174.63 (8)
C4—C3—N1—C9	-157.70 (11)	N1—Ni1—N2—C5	-103.78 (9)
C4—C3—N1—C1	75.29 (14)	O9—Ni1—N2—C5	90.06 (9)
C4—C3—N1—Ni1	-39.81 (12)	02—C2—O7—Ni1	175.79 (13)
08—Ni1—N1—C9	48.50 (10)	C1—C2—O7—Ni1	-2.69 (18)
07—Ni1—N1—C9	122.22(10)	06 - Ni1 - 07 - C2	-91.55(10)
OF NEL NIL CO	-133.23 (10)	00 111 07 02	,
00-NII-NI-C9	-43.79 (9)	N2—Ni1—O7—C2	93.81 (11)
N2—Ni1—N1—C9	-43.79 (9) 132.13 (10)	N2—Ni1—O7—C2 N1—Ni1—O7—C2	93.81 (11) 8.08 (11)

O8—Ni1—N1—C1	170.66 (9)	O5-C6-O8-Ni1	170.31 (11)
O7—Ni1—N1—C1	-11.06 (9)	C5—C6—O8—Ni1	-10.99 (17)
O6—Ni1—N1—C1	78.38 (8)	O6—Ni1—O8—C6	-166.26 (10)
N2—Ni1—N1—C1	-105.71 (9)	N2—Ni1—O8—C6	8.50 (10)
O9—Ni1—N1—C1	-61.20 (17)	N1—Ni1—O8—C6	93.84 (11)
O8—Ni1—N1—C3	-70.97 (9)	O9—Ni1—O8—C6	-70.82 (11)
O7—Ni1—N1—C3	107.30 (9)	O1-C8-O9-Ni1	169.74 (12)
O6—Ni1—N1—C3	-163.26 (8)	C7—C8—O9—Ni1	-8.00 (16)
N2—Ni1—N1—C3	12.65 (8)	O8—Ni1—O9—C8	105.34 (9)
O9—Ni1—N1—C3	57.16 (16)	O7—Ni1—O9—C8	-73.36 (9)
C8—C7—N2—C4	148.46 (11)	O6—Ni1—O9—C8	-163.74 (9)
C8—C7—N2—C5	-83.18 (14)	N2—Ni1—O9—C8	21.64 (9)
C8—C7—N2—Ni1	33.64 (12)	N1—Ni1—O9—C8	-23.69 (18)
C3—C4—N2—C7	-158.79 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$		
O1—H1···O7 ⁱ	0.82	1.77	2.5557 (14)	159		
O3—H3···O5 ⁱⁱ	0.82	1.79	2.5864 (13)	164		
O6—H6A····O9 ⁱⁱⁱ	0.88	2.15	2.9294 (12)	148		
O6—H6B···O2 ^{iv}	0.86	1.81	2.6394 (11)	162		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) x , $-y-1/2$, $z+1/2$; (iii) $-x+1$, $-y$, $-z+1$; (iv) $-x+1$, $y-1/2$, $-z+3/2$.						

